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Abstract

Considering here is an inverse problem for estimating the unknown nonhomogeneous heat conductivity function aðxÞ in
T tðx; tÞ ¼ oðaðxÞT xÞ=oxþ hðx; tÞ with the aid of an extra measurement of temperatures at a final time, which may be disturbed by random
noise. A Lie-group shooting method (LGSM) is developed from the one-step Lie-group elements obtained by a spatial-discretization of
heat conduction equation and by using the central difference or forward difference for a0ðxÞ in spatial domain. The heat conductivities are
available by directly solving linear equations. The new methods have twofold advantages in that no a priori information of heat con-
ductivity is required and no iterations in the calculation process are needed. The accuracy and robustness of present methods are con-
firmed by comparing estimated results with exact solutions. The LGSM is stable and accurate, although the estimations are carried out
under a large measurement noise.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Present study aims to estimate as accurately as possible
the nonhomogeneous heat conductivity parameter by solv-
ing an inverse heat conduction problem under an overspec-
ified final time temperature, which can be acquired through
measurements by thermocouples in a heat conducting rod.
This identification problem can find wide range applica-
tions in engineering and science. For new materials, it is
often easier to measure the temperatures at some points
in the medium at a certain time, rather than that to directly
measure the thermophysical parameters themselves. Due to
its importance on the knowledge of thermophysical proper-
ties for new materials used in many thermal system analy-
ses, this inverse problem has already attracted much
attentions.
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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The parameters determination in partial differential
equations (PDEs) from overspecified data are widely
encountered in the modeling of physical phenomena. We
consider an inverse problem of finding an unknown param-
eter aðxÞ in a one-dimensional heat conduction equation, of
which one needs to find the temperature distribution T ðx; tÞ
as well as the heat conductivity function aðxÞ that simulta-
neously satisfy

oT ðx; tÞ
ot

¼ o

ox
aðxÞ oT ðx; tÞ

ox

� �
þ hðx; tÞ;

0 < x < ‘; 0 < t 6 tf ; ð1Þ
T ð0; tÞ ¼ F 0ðtÞ; T ð‘; tÞ ¼ F ‘ðtÞ; ð2Þ
T ðx; 0Þ ¼ f ðxÞ; ð3Þ

where hðx; tÞ is a heat generating function, and F 0ðtÞ, F ‘ðtÞ
and f ðxÞ are respectively the given functions of left-bound-
ary temperature, right-boundary temperature and initial
temperature.
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Nomenclature

A augmented matrix
a; b coefficients defined in Eqs. (28), (31) and (37)
ai coefficient defined in Eq. (56)
bi coefficient defined in Eq. (57)
ci coefficient defined in Eq. (58)
B matrix defined by Eq. (59)
C integration constant
c vector defined by Eq. (59)
d vector defined in Eq. (63)
D matrix defined in Eq. (62)
ei normally distributed random error
f n-dimensional vector field
f̂ :¼ f ð̂t; bTÞ
f̂ i the ith component of f̂

f ðxÞ initial temperature function
F 0ðtÞ left-boundary function
F ‘ðtÞ right-boundary function
F mðxÞ temperature function at final time tf

F :¼ f̂=kbTk
g (nþ 1)-dimensional Minkowski metric
G an element of Lorentz group
Gi; i ¼ 1; . . . ;K elements of Lorentz group
GðrÞ an element of Lorentz group
GðtfÞ an element of Lorentz group
G0

0 the 00-th component of G

hðx; tÞ heat generating function
hiðtÞ :¼ hðxi; tÞ
ĥi :¼ hið̂tÞ
In n-dimensional unit matrix
‘ length of rod
k � k Euclidean norm
Mnþ1 (nþ 1)-dimensional Minkowski space
n number of interior grid points
r weighting factor
S :¼ tfkTf � T0k

SOoðn; 1Þ (nþ 1)-dimensional Lorentz group
soðn; 1Þ the Lie algebra of SOoðn; 1Þ
t time
tf final time
t0 :¼ tf=2
t̂ :¼ ð1� rÞtf

Dt time stepsize
T temperature
T temperature vector of T i

T0 initial temperature vector
Tf temperature vector at final time tfbT :¼ rT0 þ ð1� rÞTf

T iðtÞ :¼ T ðxi; tÞbT i the ith component of bT
x space variable
xi discretized coordinate of x

Dx mesh size of x

X (nþ 1)-dimensional augmented vector
Xk numerical value of X at the kth time step
X0 the value of X at initial time
Xf the value of X at final time tf

Z :¼ expðS=gÞ

Greek symbols

aðxÞ spatial-dependent heat conductivity
ai :¼ aðxiÞ
a vector form of ai

g coefficient defined in Eq. (34)
h intersection angle of Tf � T0 and T0

r standard deviation of measurement errors

Subscripts and superscripts

i index
K index
t transpose
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Because the above problem has an unknown function
aðxÞ, it cannot be solved directly to find T ðx; tÞ. This point
is drastically different from the direct problem, where aðxÞ
is given, and the solution of T ðx; tÞ is available by using
general numerical methods. Here, ‘ is a length of the heat
conducting rod, and tf is a terminal time, at which an over-
specified final temperature

T ðx; tfÞ ¼ F mðxÞ ð4Þ

is required, in order to have enough information to esti-
mate the unknown function aðxÞ.

We will develop a new Lie-group shooting method
(LGSM) for the inverse problem of parameter identifica-
tion governed by Eqs. (1)–(4), which is for a possible appli-
cation in heat conduction engineering by considering
nonhomogeneous materials. The inverse problems are
those in which one would like to determine the causes for
an observed effect. The inverse problems are usually ill-
posed. For the present inverse problem the observed effect
is the temperature measurements in the rod at a final time.
We are interesting to search the unknown coefficient aðxÞ in
Eq. (1), which causes the effect we observe through mea-
surement of temperature. For this inverse problem the
measurement error may lead to a large discrepancy from
the true cause.

In order to overcome this problem, there have been
many studies, for example, Yeung and Lam [1], Keung
and Zou [2], Lin et al. [3], Chang and Chang [4], Engl
and Zou [5], Ben-yu and Zou [6], Jia and Wang [7], and ref-
erences therein. Most of the studies applied the least
squares method to estimate the heat conductivity in inverse
heat conduction problems. Usually, the function form of
the unknown heat conductivity is assumed, and the inverse
problem is solved through an iteration process.



C.-S. Liu / International Journal of Heat and Mass Transfer 51 (2008) 2603–2613 2605
Ito and Kunisch [8,9] have proposed a very stable and
efficient Lagrangian method for the identification of aðxÞ
under a steady-state condition and with a smooth assump-
tion on aðxÞ. Then, Chen and Zou [10] extended that
method to a non-smooth case in the steady-state elliptic
system. Lam and Yeung [11] have employed a first-order
finite difference method to determine the heat conductivity
in a one-dimensional heat conduction equation. Yeung and
Lam [1] extended that result by using a second-order finite
difference technique. Chang and Chang [4] derived linear
equations by using a finite volume method to determine
the unknown heat conductivity without needing of itera-
tions. For the problem governed by Eqs. (1)–(4), Liu
et al. [12] have developed a highly accurate Lie-group esti-
mation method, but required to know the boundary values
of a a priori, and the measuring time tf should be close to
the initial time.

In practical applications we may encounter the inverse
problem for composite materials or highly heterogeneous
materials with a requirement to estimate discontinuous
and periodically-oscillatory thermophysical parameters in
a transient state. For this inverse problem, it is still a great
challenge due to the lack of an efficient, accurate and stable
method.

Present approach is based on the numerical method of
line, which transforms PDEs into a system of ordinary dif-
ferential equations (ODEs). Recently, Liu [13–15] has
extended the group preserving scheme (GPS) developed
previously by Liu [16] for ODEs to solve the boundary
value problems (BVPs), and the numerical results reveal
that the GPS is a rather promising method to effectively
calculate the two-point BVPs. In the construction of the
Lie group method for the calculations of BVPs, Liu [13]
has introduced the idea of one-step GPS by utilizing the
closure property of Lie group, and hence, the new shooting
method has been named the Lie-group shooting method
(LGSM).

On the other hand, in order to effectively solve the back-
ward in time problems of parabolic PDEs, a past cone
structure and a backward group preserving scheme have
been successfully developed by the author, such that the
one-step Lie-group numerical methods have been used to
solve the backward in time Burgers equation by Liu [17],
and the backward in time heat conduction equation by
Liu et al. [18].

Liu [19–21] has used the concept of one-step GPS to
develop numerical estimation methods for unknown tem-
perature-dependent heat conductivity and heat capacity
of a one-dimensional heat conduction equation. The Lie-
group method possesses a great advantage than other
numerical methods due to its group structure, and it is a
powerful technique to solve the inverse problems of param-
eters identification.

The Lie-group method is originally used for the BVPs as
designed by Liu [13–15] for direct problems. However,
these methods are restricted only for two-dimensional
ODEs, and here we will extend them to the multi-dimen-
sional inverse problem. In a series of papers by the author
and his coworkers, the Lie-group method reveals its excel-
lent behavior on the numerical solutions of different type
problems, for example, Chang et al. [22] to calculate the
sideways heat conduction problem, Chang et al. [23] to
treat the boundary layer equation in fluid mechanics, and
Liu [24], Liu et al. [18], and Chang et al. [25,26] to treat
the backward heat conduction equation, and Liu et al.
[27] to treat the Burgers equation.

It should be stressed that the one-step Lie-group prop-
erty is usually not shared by other numerical methods,
because those methods do not belong to the Lie-group
schemes. This important property as first pointed out by
Liu [17] was employed to solve the backward in time Bur-
gers equation. After that, Liu [19] has used this concept to
establish a one-step estimation method to estimate the tem-
perature-dependent heat conductivity, and then extended
the Lie-group method to estimate the thermophysical prop-
erties of heat conductivity and heat capacity [12,20,21].
2. The numerical procedures

Eq. (1) can be written as

oT ðx; tÞ
ot

¼ a0ðxÞ oT ðx; tÞ
ox

þ aðxÞ o
2T ðx; tÞ
ox2

þ hðx; tÞ; ð5Þ

where a0ðxÞ is the derivative of aðxÞ with respect to x. We
adopt the numerical method of line to discretize the above
derivatives with respect to x by

oT ðx; tÞ
ox

����
x¼iDx

¼ T iþ1ðtÞ � T i�1ðtÞ
2Dx

; ð6Þ

o
2T ðx; tÞ
ox2

����
x¼iDx

¼ T iþ1ðtÞ � 2T iðtÞ þ T i�1ðtÞ
ðDxÞ2

; ð7Þ

where Dx ¼ ‘=ðnþ 1Þ is a uniform spatial increment with
the number n of interior grid points, and xi ¼ iDx are the
discretized coordinates of x, at which the temperature is
discretized as T iðtÞ ¼ T ðxi; tÞ. Here, x0 ¼ 0 and xnþ1 ¼ ‘. A
similar finite difference can be used for a0ðxÞ.

In doing so, we can obtain a system of ODEs for T with
t as an independent variable:

_T iðtÞ ¼
aiþ1 � ai�1

2Dx
T iþ1ðtÞ � T i�1ðtÞ

2Dx

þ ai
T iþ1ðtÞ � 2T iðtÞ þ T i�1ðtÞ

ðDxÞ2
þ hiðtÞ; i ¼ 1; . . . ; n;

ð8Þ

where hiðtÞ ¼ hðxi; tÞ and ai ¼ aðxiÞ are, respectively, the
discretized quantities of hðx; tÞ and aðxÞ at the nodal point
xi.

When i ¼ 1, the term T 0ðtÞ appeared in Eq. (8) is deter-
mined by the first boundary condition in Eq. (2). Similarly,
when i ¼ n, the term T nþ1ðtÞ is determined by the second
boundary condition in Eq. (2). Those are, T 0ðtÞ ¼ F 0ðtÞ
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and T nþ1ðtÞ ¼ F ‘ðtÞ. On the other hand, the terms a0 and
anþ1 are supposed to be measurable on boundaries.

The known initial condition is given by

T ið0Þ ¼ f ðxiÞ; i ¼ 1; . . . ; n; ð9Þ
which is obtained from Eq. (3) by a discretization. In sum-
mary, we have totally n ODEs in Eq. (8) to solve the 2n un-
knowns T iðtÞ and ai; i ¼ 1; . . . ; n with the aid of an extra n

known values of

T iðtfÞ ¼ F mðxiÞ; i ¼ 1; . . . ; n: ð10Þ
The Lie-group shooting method as first developed by Liu
[13] will be extended and applied to Eq. (8). After giving
a necessary mathematical background of the LGSM in
next section, we will derive linear equations in Section 4
to determine the unknown coefficients ai; i ¼ 1; . . . ; n.

3. Mathematical backgrounds

In order to explore our new method in a self-content
fashion, let us first briefly sketch the group-preserving
scheme (GPS) for ODEs and the one-step GPS in this
section.

3.1. The GPS

Let us write Eq. (8) in a vector form:

_T ¼ fðt;TÞ; ð11Þ
where

T :¼

T 1ðtÞ
..
.

T nðtÞ

2664
3775;

f :¼

a2�a0

2Dx
T 2�T 0

2Dx þ a1
T 2�2T 1þT 0

ðDxÞ2 þ h1

a3�a1

2Dx
T 3�T 1

2Dx þ a2
T 3�2T 2þT 1

ðDxÞ2 þ h2

..

.

an�an�2

2Dx
T n�T n�2

2Dx þ an�1
T n�2T n�1þT n�2

ðDxÞ2 þ hn�1

anþ1�an�1

2Dx
T nþ1�T n�1

2Dx þ an
T nþ1�2T nþT n�1

ðDxÞ2 þ hn

266666666664

377777777775
: ð12Þ

T represents a vector form of the discretized temperatures
at interior grid points, and the components of f represent
the right-hand sides of Eq. (8). The dependence of f on t

is due to the dependence of boundary condition (2) as well
as the source functions hi on t.

When both the vector T and its magnitude
kTk :¼

ffiffiffiffiffiffiffiffi
TtT
p

¼
ffiffiffiffiffiffiffiffiffiffi
T � T
p

are combined into a single aug-
mented vector

X ¼
T

kTk

� �
; ð13Þ

Liu [16] has transformed Eq. (11) into an augmented differ-
ential equations system:
_X ¼ AX; ð14Þ
where

A :¼
0n�n

fðt;TÞ
kTk

ftðt;TÞ
kTk 0

24 35 ð15Þ

is an element of the Lie algebra soðn; 1Þ satisfying

Atgþ gA ¼ 0; ð16Þ
and

g ¼
In 0n�1

01�n �1

� �
ð17Þ

is a Minkowski metric. Here, In is the identity matrix, and
the superscript t stands for the transpose.

The augmented variable X can be viewed as a point in
the Minkowski space Mnþ1, satisfying the cone condition:

XtgX ¼ T � T� kTk2 ¼ 0: ð18Þ
Then, Liu [16] developed a group preserving scheme (GPS)
to guarantee that each Xk locates on the cone:

Xkþ1 ¼ GðkÞXk; ð19Þ
where Xk denotes the numerical value of X at the discrete
time tk, and GðkÞ 2 SOoðn; 1Þ satisfies

GtgG ¼ g; ð20Þ
det G ¼ 1; ð21Þ
G0

0 > 0; ð22Þ

where G0
0 is the 00-th component of G.

3.2. One-step GPS

Throughout this paper we use the superscripted symbols
T0 to denote the value of T at t ¼ 0, and Tf the value of T

at t ¼ tf .
Applying scheme (19) on Eq. (14) with a specified initial

condition Xð0Þ ¼ X0 we can compute the solution XðtÞ by
the GPS. Assuming that the time stepsize used in the
GPS is Dt ¼ tf=K, and starting from an augmented initial
condition X0 ¼ ððT0Þt; kT0kÞt 6¼ 0, we will calculate
Xf ¼ ððTfÞt; kTfkÞt at a final time t ¼ tf .

By applying Eq. (19) step-by-step we can obtain

Xf ¼ GKðDtÞ � � �G1ðDtÞX0: ð23Þ
However, let us recall that each Gi; i ¼ 1; . . . ;K, is an ele-
ment of the Lie group SOoðn; 1Þ, and by the closure prop-
erty of Lie group, GKðDtÞ � � �G1ðDtÞ is also a Lie group
denoted by G. Hence, from Eq. (23) it follows that

Xf ¼ GX0: ð24Þ
This is a one-step Lie-group transformation from X0 to Xf .

The remaining problem is how to calculate G. While an
exact solution of G is impossible, we can calculate an
appropriate G through a numerical method by a general-
ized mid-point rule, which is obtained from an exponential
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mapping of A by taking the values of the argument vari-
ables of A at a generalized mid-point. The Lie group gen-
erated from A 2 soðn; 1Þ by an exponential mapping is

G ¼
In þ ða�1Þ

kf̂k2 f̂ f̂t bf̂

kf̂k

bf̂t

kf̂k a

24 35; ð25Þ

wherebT ¼ rT0 þ ð1� rÞTf ; ð26Þ
f̂ ¼ f ð̂t; bTÞ; ð27Þ

a ¼ cosh
tfkf̂k
kbTk

 !
; b ¼ sinh

tfkf̂k
kbTk

 !
: ð28Þ

Here, we use the initial T0 and the final Tf through a suit-
able weighting factor r to calculate G, where r 2 ½0; 1� is a
parameter to be determined and t̂ ¼ ð1� rÞtf . To stress
its dependence on r we denote this G by GðrÞ.

3.3. A universal one-step GPS

Let us define a new vector

F :¼ f̂

kbTk ; ð29Þ

such that Eqs. (25) and (28) can be also expressed as

G ¼
In þ a�1

kFk2 FFt bF
kFk

bFt

kFk a

" #
; ð30Þ

a ¼ coshðtfkFkÞ; b ¼ sinhðtfkFkÞ: ð31Þ

From Eqs. (13), (24) and (31) it follows that

Tf ¼ T0 þ gF; ð32Þ

kTfk ¼ akT0k þ b
F � T0

kFk ; ð33Þ

where

g :¼ ða� 1ÞF � T0 þ bkT0kkFk
kFk2

: ð34Þ

Eq. (32) is written as

F ¼ 1

g
ðTf � T0Þ; ð35Þ

which being substituted into Eq. (33) and dividing both the
sides by kT0k, we obtain

kTfk
kT0k

¼ aþ b
ðTf � T0Þ � T0

kTf � T0kkT0k
: ð36Þ

After inserting Eq. (35) for F into Eq. (31), a and b are now
written as

a ¼ cosh
tfkTf � T0k

g

� �
; b ¼ sinh

tfkTf � T0k
g

� �
: ð37Þ

Let
cos h :¼ ðT
f � T0Þ � T0

kTf � T0kkT0k
; ð38Þ

S :¼ tfkTf � T0k; ð39Þ

where 0 6 h 6 p is the intersection angle between vectors
Tf � T0 and T0, and thus from Eq. (36) and (37) it follows
that

kTfk
kT0k

¼ cosh
S
g

� �
þ cos h sinh

S
g

� �
: ð40Þ

Upon defining

Z :¼ exp
S
g

� �
; ð41Þ

from Eq. (40) we obtain a quadratic equation for Z:

ð1þ cos hÞZ2 � 2kTfk
kT0k

Z þ 1� cos h ¼ 0: ð42Þ

Because the following condition is satisfied:

kTfk
kT0k

� �2

� 1þ cos2 h P 0; ð43Þ

the solutions of Z are found to be

Z ¼ kTfk
kT0k

� ��1

if cos h ¼ �1; ð44Þ

Z ¼
kTfk
kT0k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTfk
kT0k

� 	2

� 1þ cos2 h

r
1þ cos h

if 0 6 � cos h < 1: ð45Þ

From Eqs. (41) and (39) it follows that

g ¼ tfkTf � T0k
ln Z

: ð46Þ

Therefore, we come to an important result that between
any two points ðT0; kT0kÞ and ðTf ; kTfkÞ on the cone, there
exists a Lie-group element GðtfÞ 2 SOoðn; 1Þ mapping
ðT0; kT0kÞ onto ðTf ; kTfkÞ, which is given by

Tf

kTfk

" #
¼ GðtfÞ

T0

kT0k

" #
; ð47Þ

where GðtfÞ is uniquely determined by T0 and Tf through
the following equations:

GðtfÞ ¼
In þ a�1

kFk2 FFt bF
kFk

bFt

kFk a

" #
; ð48Þ

a ¼ coshðtfkFkÞ; b ¼ sinhðtfkFkÞ; ð49Þ

F ¼ 1

g
ðTf � T0Þ ¼ ln Z

tf

Tf � T0

kTf � T0k
: ð50Þ

In view of Eqs. (44), (45) and (38), it can be seen that G is
fully determined by T0 and Tf , and is independent on the
vector field f in Eq. (11).

Notice that the above G is different from the one in Eq.
(25). In order to stress its property as a Lie-group mapping
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between the quantities spanned a whole time interval ½0; tf �
we write it to be GðtfÞ. Conversely, GðrÞ is a function of r.
However, these two Lie group elements GðrÞ and GðtfÞ are
both indispensable in our development of the Lie-group
shooting method in the next section for the inverse problem
of parameter identification.

The two Lie-groups GðrÞ and GðtfÞ are constructed by
different manners. When the former is obtained by using
the generalized mid-point rule, the latter is a universal
mapping between ðT0; kT0kÞ and ðTf ; kTfkÞ independent
on the vector field f, which means that such a mapping is
applicable to all ODEs systems. It is interesting that by let-
ting GðrÞ ¼ GðtfÞ we can derive the required governing
equation below. From this point of view we may call our
method the Lie-group shooting method (LGSM).

4. The Lie-group shooting method

4.1. GðrÞ ¼ GðtfÞ

Letting GðrÞ ¼ GðtfÞ is essentially identical to letting the
two F’s in Eqs. (29) and (50) be equal, which leads to

Tf ¼ T0 þ g

kbTk f̂; ð51Þ

where

kbTk ¼ krT0 þ ð1� rÞTfk: ð52Þ
Up to here we have constructed a Lie-group shooting Eq.
(51), which is a universal algebraic equation applicable to
any vector field f, and we may call it a natural field equa-
tion. This equation involves four quantities of T0, Tf , f

and r, the last of which is a single parameter uniquely deter-
mined by matching the target Eq. (4), i.e., T ðx; tfÞ ¼ F mðxÞ.

For the later use we write f̂ explicitly,

f̂ ¼

a2�a0

2Dx
T̂ 2�T̂ 0

2Dx þ a1
T̂ 2�2T̂ 1þT̂ 0

ðDxÞ2 þ ĥ1

a3�a1

2Dx
T̂ 3�T̂ 1

2Dx þ a2
T̂ 3�2T̂ 2þT̂ 1

ðDxÞ2 þ ĥ2

..

.

an�an�2

2Dx
T̂ n�T̂ n�2

2Dx þ an�1
T̂ n�2T̂ n�1þT̂ n�2

ðDxÞ2 þ ĥn�1

anþ1�an�1

2Dx
T̂ nþ1�T̂ n�1

2Dx þ an
T̂ nþ1�2T̂ nþT̂ n�1

ðDxÞ2 þ ĥn

266666666664

377777777775
; ð53Þ

where T̂ i ¼ rT 0
i þ ð1� rÞT f

i ¼ rf ðxiÞ þ ð1� rÞF mðxiÞ, ĥi ¼
hið̂tÞ; i ¼ 1; . . . ; n, and T̂ 0 ¼ F 0ð̂tÞ and T̂ nþ1 ¼ F ‘ð̂tÞ.

We should stress that f̂ is an unknown vector due to the
appearance of the unknown coefficients ai, but the vectors
T0 and Tf are known, given by

T0 ¼

f ðx1Þ
..
.

f ðxnÞ

2664
3775; Tf :¼

F mðx1Þ
..
.

F mðxnÞ

2664
3775: ð54Þ

Although f̂ is unknown we can evaluate it as follows. By
using Eq. (51) we can solve f̂ by
f̂ ¼ k
bTk
g
ðTf � T0Þ: ð55Þ

Because T0, Tf and g calculated by Eq. (46) are all avail-
able, for a specified r, we can use Eq. (55) to calculate f̂,
and then by Eq. (53) we can calculate ai as follows. Let

ai ¼
bT iþ1 � bT i�1

4ðDxÞ2
; i ¼ 1; . . . ; n; ð56Þ

bi ¼
bT iþ1 � 2bT i þ bT i�1

ðDxÞ2
; i ¼ 1; . . . ; n; ð57Þ

ci ¼ f̂ i � ĥi; i ¼ 1; . . . ; n; ð58Þ

where f̂ i denotes the ith component of f̂, and from Eq. (53)
we can obtain a linear equations system for ai:

b1 a1 0 0 � � � 0

�a2 b2 a2 0 � � � 0

0 � � � ..
. ..

. ..
. ..

.

0 � � � 0 �an�1 bn�1 an�1

0 � � � 0 0 �an bn

266666664

377777775
a1

..

.

an

2664
3775

¼

c1 þ a1a0

c2

..

.

cn�1

cn � ananþ1

266666664

377777775: ð59Þ

We denote the above equation by

Ba ¼ c; ð60Þ

and consider the normal equation:

Da ¼ d; ð61Þ

where

D :¼ BtB; ð62Þ
d :¼ Btc: ð63Þ

Then, the conjugate gradient method is used to solve Eq.
(61) to obtain ai; i ¼ 1; . . . ; n.

4.2. How to choose r

Now we come to an important problem that how to
choose r? In the paper by Liu et al. [12], they simply use
r ¼ 1 and show that the numerical solutions of a can be
very accurate when tf is rather small. The method used
there is named the Lie-group estimation method (LGEM),
which is a special case of the present method by using
r ¼ 1. When tf increases, the LGEM may reduce its accu-
racy because r ¼ 1 may be not the best one.

Then we turn our attention to the choice of r, and use
numerical examples to demonstrate this idea. Under the
known initial condition of T0 and the coefficients ai solved
from Eq. (61), we can return to Eq. (8) and integrate it to
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Fig. 1. For example 1: (a) comparing numerical errors with different final
times with respect to r, (b) plotting absolute error, and (c) plotting
maximum relative error with respect to r.
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obtain TðtfÞ. The above process can be done for all r in the
interval of r 2 ½0; 1�. Among these solutions we can pick up
the best r by searching the smallest error of

min
r2½0;1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTðtfÞ � Tfk2

q
; ð64Þ

such that the final time condition specified by Eq. (4) can
be fulfilled as best as possible.

When the process terminates, inserting the best r and f̂ i

into Eq. (61) we can estimate the nonhomogeneous coeffi-
cient aðxÞ.

5. Numerical tests

5.1. Example 1

Let us use the following example to demonstrate the
above process. This example is given by

aðxÞ ¼ ðx� 3Þ2; ð65Þ
hðx; tÞ ¼ �7ðx� 3Þ2e�t: ð66Þ

Under the boundary conditions

T ð0; tÞ ¼ 9e�t; T ð1; tÞ ¼ 4e�t; ð67Þ

and the initial condition

T ðx; 0Þ ¼ ðx� 3Þ2; ð68Þ

the exact solution is given by

T ðx; tÞ ¼ ðx� 3Þ2e�t: ð69Þ

In this identification of aðxÞ we have fixed Dx ¼ 1=40 and
tf ¼ 0:01 and 0:1. Applying the LGSM by choosing the
best r, the solutions of ai are almost equal to the exact ones
with the maximum relative errors 1:0405625� 10�13 when
tf ¼ 0:1 and 1:7781618� 10�13 when tf ¼ 0:01 as shown
in Fig. 1a by the solid lines. The above maximum relative
errors are much smaller than the one 0.0025 obtained by
Yeung and Lam [1], and are also better than the ones pre-
sented by Liu et al. [12] with two orders. The L2-norm er-
rors are also plotted in Fig. 1a by the dashed lines.
Overall, larger tf reduces the accuracy. The above results
suggest us to use r ¼ 0 instead of r ¼ 1. Even under a large
tf ¼ 1, the present LGSM is also workable, where the abso-
lute error between exact solution and numerical solution is
plotted in Fig. 1b. The accuracy is very high up to the order
of 10�12.

We have carried out numerical estimations to assess the
accuracy of the proposed inverse method without consider-
ing noise. When the measurement of temperature data is
contaminated by noise, we can simulate the noisy temper-
ature data, �F mðxiÞ; i ¼ 1; . . . ; n by adding random errors
on exact temperatures F mðxiÞ; i ¼ 1; . . . ; n by

�F mðxiÞ ¼ F mðxiÞ þ rei; i ¼ 1; . . . ; n; ð70Þ

where r is the standard deviation of measurement errors,
assumed to be the same for all measurements, and ei is a
normally distributed random error. For normally distrib-
uted error, there is a 99% probability of the value of ei lying
in the range �2:576 < ei < 2:576. The readers may refer
Liu [21], where how to generate the normally distributed
error was given.

In Fig. 1c the maximum relative error is plotted with
respect to r under the same r ¼ 0:01. When r ¼ 0 the max-
imum relative error is 0.021 and when r ¼ 1 the maximum
relative error is 0.017.

5.2. Example 2

Let us consider a one-dimensional heat conduction
problem with

aðxÞ ¼ 1þ 0:25e�4ðx�0:3Þ2 ; ð71Þ
hðx; tÞ ¼ ðx� 0:6Þ2ð1� tÞe�t � f2þ ½0:5

� 4ðx� 0:3Þðx� 0:6Þ�e�4ðx�0:3Þ2gte�t: ð72Þ

Under the boundary conditions

T ð0; tÞ ¼ 0:36te�t; T ð1; tÞ ¼ 0:16te�t; ð73Þ
and the initial condition
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T ðx; 0:19Þ ¼ 0:19e�0:19ðx� 0:6Þ2; ð74Þ

the exact solution is given by

T ðx; tÞ ¼ ðx� 0:6Þ2te�t: ð75Þ

The one-dimensional domain ½0; 1� is discretized by nþ 2
points including two end points, at which the two bound-
ary conditions T 0ðtÞ ¼ 0:36te�t and T nþ1ðtÞ ¼ 0:16te�t are
imposed on the totally n differential equations obtained
from Eq. (8). In this identification of aðxÞ we have fixed
Dx ¼ 1=40, i.e., n ¼ 39, and tf ¼ 0:2. Applying the LGSM,
the numerical solutions of ai by using r ¼ 1 are almost
equal to the exact ones with the maximum relative error
4:3� 10�11 as shown in Fig. 2. The above maximum rela-
tive error is much smaller than the one 0.0004 obtained
by Yeung and Lam [1].

In order to discuss the effect of mesh size on the accu-
racy of the calculated heat conductivity, the spatial domain
0 < x < 1 is divided into 10, 20, and 40 subintervals for the
above two demonstrated examples. The maximum relative
errors of the calculated results are shown in Table 1 for
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Fig. 2. For example 2: (a) comparing exact and LGSM numerical result of
heat conductivity, and (b) plotting relative error.

Table 1
Maximum errors on estimated heat conductivities for tf ¼ 0:2 comparing with

Example Dx ¼ 0:1 Dx ¼ 0:05

Present [4] [1] Present

1 2:4� 10�14 0.0292 0.0385 1:3� 10�13

2 1:7� 10�13 0.0070 0.0073 5:2� 10�13
mesh sizes Dx ¼ 0:1, 0:05 and 0:025. In our calculations
of these cases r ¼ 1 is fixed, and the initial time is fixed
to be ti ¼ 0 and the final time is fixed to be tf ¼ 0:2 for
Example 1, and the initial time is fixed to be ti ¼ 0:199
and the final time is fixed to be tf ¼ 0:2 for Example 2.
The results show that the maximum error is increased with
decreasing mesh size. This property is very interesting and
important, because in the measurement of temperatures we
usually need to use thermocouples, whose number is better
to limit as small as possible.

Comparing with Yeung and Lam [1] by second-order
finite difference approach and with Chang and Chang [4]
by finite volume method, the maximum error of the present
study are much smaller. In contrast to our method, those
methods required more measuring data in order to get
more accurate results. It demonstrates that the proposed
method of LGSM is an accurate and efficient technique
to inverse estimation of heat conductivity.

6. Without knowing boundary values of a

6.1. A forward finite difference

The appearance of a0 and anþ1 in Eq. (59) is due to that
we have taken a central difference for a0 in Eq. (5), and in
the previous estimations we have assumed that a0 and anþ1

can be measured. In this case we can obtain highly accurate
results as shown by Examples 1 and 2 in Section 5. Now,
we take a forward finite difference for both a0 and oT=ox
in Eq. (5), and then we have

_T iðtÞ ¼
aiþ1 � ai

Dx
T iþ1ðtÞ � T iðtÞ

Dx

þ ai
T iþ1ðtÞ � 2T iðtÞ þ T i�1ðtÞ

ðDxÞ2
þ hiðtÞ; i ¼ 1; . . . ; n:

ð76Þ

Applying the same idea of LGSM on the above equation
we can obtain a closed-form formula to estimate ai:

ai ¼
ðDxÞ2bT i � bT i�1

bT iþ1 � bT i

ðDxÞ2
aiþ1 þ ĥi �

kbTk
g
ðT f

i � T 0
i Þ

" #
:

ð77Þ
The above equation can be sequentially used to find
ai; i ¼ n; . . . ; 1 if we know anþ1 a priori. Here, anþ1 is the
right-boundary value of a, which is now supposed to be
an unknown value. This point is different from the previous
paper by Liu et al. [12].
other methods: Yeung and Lam [1] and Chang and Chang [4]

Dx ¼ 0:025

[4] [1] Present [4] [1]

0.0074 0.0099 1:9� 10�13 0.0019 0.0025
0.0017 0.0018 1:3� 10�10 0.00042 0.00045
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For a specified r and assuming anþ1, the above equation
yields a sequence of ai. Then we use the one-step GPS to
calculate the data T f

i by using these coefficients ai. The final
data is not immediately coincident with the measured data.
However, we can change the value of anþ1 untill the result-
ing data T f

i has a minimum discrepancy to the measured
data. That is, we search the value of anþ1 by

min
anþ1>0

Xn

i¼1

jT f
i � F mðxiÞj2: ð78Þ

When the searching range of anþ1 is gradually refined we
can obtain a very good approximation of the true bound-
ary value of a. For example, we obtain anþ1 ¼ 3:99966
for Example 1, of which the true value is 4. In this calcula-
tion the parameters used are r ¼ 1, tf ¼ 0:2 and Dx ¼ 0:025.

Fig. 3 displays the numerical results. It can be seen that
these two curves as shown in Fig. 3a of numerical and exact
ones are very close, and the error as shown in Fig. 3b is
smaller than 8:2� 10�5. When we compare this result with
those calculations by Yeung and Lam [1] and Chang and
Chang [4], it is still better about two orders.

Even under a large noise with r ¼ 0:02 the maximum
relative error is about in the order of 6:3� 10�3, of which
the numerical result and numerical error are shown, respec-
tively, in Figs. 3a and b. From this example it can be seen
that our method is also applicable for the case under the
noised disturbance on the measured data. The robustness
of the present method is better than that of Chang and
Chang [4].
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Fig. 3. For example 1: (a) comparing exact and numerical results under
r ¼ 0; 0:02 of heat conductivity, and (b) plotting relative errors.
6.2. Example 3

This problem is under the following observed data:

F mðxÞ ¼ sin px exp½sin ptf �; ð79Þ

which is obtained from

T ðx; tÞ ¼ sin px exp½sin pt�: ð80Þ

But the identified function aðxÞ is highly discontinuous and
oscillatory given as follows:

aðxÞ ¼
2 x 2 ½0; 0:3�;
4 x 2 ð0:3; 0:6Þ;
2þ sinð10pxÞ x 2 ½0:6; 1�:

8><>: ð81Þ

The function hðx; tÞ is calculated as

hðx; tÞ ¼

fp cos pt þ 2p2g exp½sin pt� sin px

x 2 ½0; 0:3�;
fp cos pt þ 4p2g exp½sin pt� sin px

x 2 ð0:3; 0:6Þ;
fp cos pt þ ð2þ sin 10pxÞp2g exp½sin pt� sin px

�10p2 cos px cos 10px exp½sin pt�
x 2 ½0:6; 1�:

8>>>>>>>>>>><>>>>>>>>>>>:
ð82Þ
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In this identification of aðxÞ we have fixed Dx ¼ 1=100 and
tf ¼ 0:2. Applying Eq. (77), the solutions of ai are almost
equal to the exact ones with the maximum relative error
3:5� 10�4 as shown in Fig. 4. The error is smaller than
the one 0.054 calculated by Keung and Zou [2]. Even under
a large noise with r ¼ 0:02 the maximum relative error is
small in the order of 10�3, of which the numerical result
and numerical error are shown, respectively, in Figs. 4a
and b. From this example it can be seen that our method
is also applicable to the estimation of highly discontinuous
and oscillatory parameter. The robustness of the present
method is better than that by Liu et al. [12].

Through these identifications of aðxÞ in Examples 1–3, it
can be seen that our estimations are rather accurate, no
matter the function aðxÞ is smooth or non-smooth. The
accuracy and efficiency of our LGSM is much better than
other methods.

6.3. A simple view of Eq. (1)

When a final time measurement of temperatures at tf can
be made as short as possible, the duration of time interval
is very short, and we can rewrite Eq. (1) as an ODE at a
time t0 by letting

T ðx; tfÞ � T ðx; 0Þ
2Dt

¼ o

ox
aðxÞ oT ðx; t0Þ

ox

� �
þ hðx; t0Þ;

0 < x < ‘; ð83Þ

where t0 ¼ tf=2 ¼ Dt.
Integrating both the sides of Eq. (83) and leaving a con-

stant C at there, we obtainZ x

0

T ðn; tfÞ � T ðn; 0Þ
2Dt

dnþ C

¼ aðxÞ oT ðx; t0Þ
ox

þ
Z x

0

hðn; t0Þdn; ð84Þ

where we can approximate oT ðx; t0Þ=ox by

oT ðx; t0Þ
ox

¼ 1

2

oT ðx; tfÞ
ox

þ oT ðx; 0Þ
ox

� �
: ð85Þ

Then we have

aðxÞ ¼ 2
oT ðx;tf Þ

ox þ oT ðx;0Þ
ox

h i C þ
Z x

0

T ðn; tfÞ � T ðn; 0Þ
2Dt

dn

�

�
Z x

0

hðn; t0Þdn

�
: ð86Þ

Here C is an unknown, which can be determined by insert-
ing the above aðxÞ into Eq. (8) and then using a finer time
stepsize, for example, Dt=N , and the fourth-order Runge–
Kutta method to integrate it from t ¼ 0 to tf to obtain
T ðxi; tfÞ, among which we can select the best C by taking
the minimum of

min
C

Xnþ1

i¼0

jT ðxi; tfÞ � F mðxiÞj2: ð87Þ
In Fig. 5 we plot the numerical results for Example 1 by fix-
ing Dt ¼ 0:005, tf ¼ 0:01 and N ¼ 10. It can be seen that
these two curves as shown in Fig. 5a of numerical and exact
ones are very close, and the error as shown in Fig. 5b is
smaller than 3� 10�5.

7. Conclusions

The LGSM by using central or forward finite difference
and a simple approach by a single ODE have been devel-
oped for the inverse estimation of spatially-dependent heat
conductivity in a one-dimensional rod. A system of linear
equations for the LGSM is constructed by using tempera-
ture data at initial and final times and heat generation at
discrete points. The unknown heat conductivity can be
solved explicitly in matrix form. The advantages of the
present method are that no prior information about the
functional form of heat conductivity is necessary, no initial
guesses and no iterations are required, and the inverse solu-
tion can be efficiently solved in a linear domain. When the
forward difference is employed in the LGSM, the estima-
tion formula could be further written in a closed-form,
which can be sequentially generating the correct heat con-
ductivity coefficients. Its defense to the noised disturbance
is remarkable. The accuracy and robustness of the present
algorithms are confirmed by comparing the estimated
results with exact solutions. It shows that a fairly accurate
estimation can be achieved even under a large measure-
ment error.



C.-S. Liu / International Journal of Heat and Mass Transfer 51 (2008) 2603–2613 2613
References

[1] W.K. Yeung, T.T. Lam, Second-order finite difference approximation
for inverse determination of thermal conductivity, Int. J. Heat Mass
Transfer 39 (1996) 3685–3693.

[2] Y.L. Keung, J. Zou, Numerical identifications of parameters in
parabolic systems, Inv. Prob. 14 (1998) 83–100.

[3] J.H. Lin, C.K. Chen, Y.T. Yang, Inverse method for estimating
thermal conductivity in one-dimensional heat conduction problems, J.
Thermophys. Heat Transfer 15 (2001) 34–41.

[4] C.L. Chang, M. Chang, Non-iteration estimation of thermal con-
ductivity using finite volume method, Int. Commun. Heat Mass
Transfer 33 (2006) 1013–1020.

[5] H.W. Engl, J. Zou, A new approach to convergence rate analysis of
Tikhonov regularization for parameter identification in heat conduc-
tion, Inv. Prob. 16 (2000) 1907–1923.

[6] G. Ben-yu, J. Zou, An augmented Lagrangian method for parameter
identifications in parabolic systems, J. Math. Anal. Appl. 263 (2001)
49–68.

[7] C. Jia, G. Wang, Identifications of parameters in ill-posed linear
parabolic equations, Nonlinear Anal. 57 (2004) 677–686.

[8] K. Ito, K. Kunisch, The augmented Lagrangian method for param-
eter estimation in elliptic systems, SIAM J. Contr. Optim. 28 (1990)
113–136.

[9] K. Ito, K. Kunisch, Augmented Lagrangian-SQR-methods in Hilbert
spaces and applications to control in the coefficients problems, SIAM
J. Optim. 6 (1996) 96–125.

[10] Z.M. Chen, J. Zou, An augmented Lagrangian method for identifying
discontinuous parameters in elliptic systems, SIAM J. Contr. Optim.
37 (1999) 892–910.

[11] T.T. Lam, W.K. Yeung, Inverse determination of thermal conduc-
tivity for one-dimensional problems, J. Thermophys. Heat Transfer 9
(1995) 335–344.

[12] C.-S. Liu, L.W. Liu, H.K. Hong, Highly accurate computation of
spatial-dependent heat conductivity and heat capacity in inverse
thermal problem, CMES: Comput. Model. Eng. Sci. 17 (2007) 1–
18.

[13] C.-S. Liu, The Lie-group shooting method for nonlinear two-point
boundary value problems exhibiting multiple solutions, CMES:
Comput. Model. Eng. Sci. 13 (2006) 149–163.
[14] C.-S. Liu, Efficient shooting methods for the second order ordinary
differential equations, CMES: Comput. Model. Eng. Sci. 15 (2006)
69–86.

[15] C.-S. Liu, The Lie-group shooting method for singularly perturbed
two-point boundary value problems, CMES: Comput. Model. Eng.
Sci. 15 (2006) 179–196.

[16] C.-S. Liu, Cone of non-linear dynamical system and group preserving
schemes, Int. J. Non-Linear Mech. 36 (2001) 1047–1068.

[17] C.-S. Liu, An efficient backward group preserving scheme for the
backward in time Burgers equation, CMES: Comput. Model. Eng.
Sci. 12 (2006) 55–65.

[18] C.-S. Liu, C.W. Chang, J.R. Chang, Past cone dynamics and
backward group preserving schemes for backward heat conduction
problems, CMES: Comput. Model. Eng. Sci. 12 (2006) 67–81.

[19] C.-S. Liu, One-step GPS for the estimation of temperature-dependent
thermal conductivity, Int. J. Heat Mass Transfer 49 (2006) 3084–
3093.

[20] C.-S. Liu, An efficient simultaneous estimation of temperature-
dependent thermophysical properties, CMES: Comput. Model. Eng.
Sci. 14 (2006) 77–90.

[21] C.-S. Liu, Identification of temperature-dependent thermophysical
properties in a partial differential equation subject to extra final
measurement data, Numer. Meth. Partial Diff. Eq. 23 (2007) 1083–1109.

[22] C.W. Chang, C.-S. Liu, J.R. Chang, A group preserving scheme for
inverse heat conduction problems, CMES: Comput. Model. Eng. Sci.
10 (2005) 13–38.

[23] C.W. Chang, J.R. Chang, C.-S. Liu, The Lie-group shooting method
for boundary layer equations in fluid mechanics, J. Hydrodyn. 18
(3(1)) (2006) 103–108.

[24] C.-S. Liu, Group preserving scheme for backward heat conduction
problems, Int. J. Heat Mass Transfer 47 (2004) 2567–2576.

[25] J.R. Chang, C.-S. Liu, C.W. Chang, A new shooting method for
quasi-boundary regularization of backward heat conduction prob-
lems, Int. J. Heat Mass Transfer 50 (2007) 2325–2332.

[26] C.W. Chang, C.-S. Liu, J.R. Chang, The Lie-group shooting method
for quasi-boundary regularization of backward heat conduction
problems, ICCES online (Journal) 3 (2007) 69–79.

[27] C.-S. Liu, C.W. Chang, J.R. Chang, The Lie-group shooting method
for steady-state Burgers equation with high Reynolds number, J.
Hydrodyn. 18 (3) (2006) 367–372, Suppl. 1.


	An LGSM to identify nonhomogeneous heat conductivity functions by an extra measurement of temperature
	Introduction
	The numerical procedures
	Mathematical backgrounds
	The GPS
	One-step GPS
	A universal one-step GPS

	The Lie-group shooting method
	{\bf{G}}(r)={\bf{G}}({t}_{{\rm f}})
	How to choose r

	Numerical tests
	Example 1
	Example 2

	Without knowing boundary values of  \alpha 
	A forward finite difference
	Example 3
	A simple view of Eq. (1)

	Conclusions
	References


